A facile synthesis of fluoroalkylpyrazoles

Jianhua Zheng, Zhibai Wang and Yanchang Shen* Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032 (China)

(Received December 31, 1991; accepted June 10, 1992)

Abstract

Fluorinated pyrazoles have been conveniently synthesized via 1,3-dipolar cycloaddition of ethyl diazoacetate with fluorine-containing acetylenes of the type $R_FC \equiv CR$, where $R_F = polyfluoroalkyl$ and R = CN or CO_2CH_3 .

Introduction

Several pyrazoles have been shown to possess useful biological properties and can be used as bacteriostats, bactericides, insecticides, fungicides, sedatives, anticarcinogens and psychopharmacological agents [1]. A number of heterocyclic compounds bearing a fluorine atom are also known to be effective pharmaceutically and agrochemically [2]. Hence methods for the synthesis of pyrazoles with fluorine-containing groups have attracted much interest. One such method is based on the use of a building block with a fluorinecontaining substituent.

Fluorinated alkynes have been found to be good dipolarophiles as exemplified by the reaction of aromatic nitrile oxides and methyl perfluoro-2-alkynoates [3]. 1,3-Dipolar cycloaddition is a useful method for the synthesis of heterocyclic compounds of biological interest [4]. We describe here a convenient route to perfluoroalkyl pyrazoles in excellent yield using fluorinecontaining acetylenes as dipolarophiles.

*Author to whom all correspondence should be addressed.

Results and discussion

Treatment of ethyl diazoacetate (2) in diethyl ether with the fluorinated acetylenes 1 gave the pyrazoles 3 and 4, which were easily separated chromatographically (see Table 1). The chemical shift of the perfluoroalkyl group in the 4-position of the pyroazole ring is downfield and that of the 3-substituted perfluoroalkyl groups in the pyrazole ring is upfield [5].

Interestingly, reaction of the cyanoacetylenes with ethyl diazoacetate takes place only at the C-C triple bonds, giving the pyrazoles 3f, 4f, 3g and 4g. All these compounds are new, and their structures have been ascertained by MS, IR and NMR spectra and by microanalysis.

Experimental

All melting points and boiling points are reported uncorrected. The infrared spectra of liquid products were determined as films while the solid products were determined as KBr disks on a Shimadzu IR-440 spectrometer. NMR spectra (chemical shifts in ppm from TMS for ¹H NMR and from external TFA for ¹⁹F NMR, positive for upfield shifts) were obtained on a Varian EM-360 spectrometer at 60 MHz. Mass spectra were recorded on a Finnigan GC–MS 4021 mass spectrometer.

The fluorine-containing acetylenes were obtained by literature methods [6, 7].

General procedure for the preparation of 3 and 4

To a solution of 1 (2 mmol) in absolute diethyl ether (2 ml) was added dropwise 2 (2 mmol) at 0 °C. The mixture was stirred at 0 °C for 15 min, then warmed to room temperature and stirred for a further 6 h. After removal of the solvent, the residue was separated by chromatography on silica gel eluting with a petroleum ether (b.p., 30-60 °C)/ethyl acetate (9:1) mixture to give 3, and then 4.

Compound	R	R_{F}	Yield (%) ^a	3:4 ^b
3a+4a	CO ₂ CH ₃	CF ₃	88	84:16
3b + 4b	CO_2CH_3	$n - C_3 F_7$	94	67:33
3c+4c	CO ₂ CH ₃	CICF	96	68:32
3d + 4d	CO ₂ CH ₂	Cl(CF _a) _a	88	71:29
3e+4e	CO ₂ CH ₃	n-C ₂ F ₇ OCFCF ₂	94	77:23
3f + 4f	CN	$n-C_{2}F_{7}$	94	75:25
3g+4g	CN	$Cl(CF_2)_3$	98	90:10

Preparation of fluoroalkylpyrazoles

TABLE 1

^aYields of isolated mixtures.

^bRatios of isolated products.

Compound **3a**: b.p., 180 °C/1 mmHg. IR(film) cm⁻¹: 1240 (s); 1740 (s). ¹H NMR (CCl₄) δ : 1.14 (t, 3H, J=7 Hz); 3.30 (s, 3H); 4.17 (q, 2H, J=7 Hz); 12.71 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : -22.2 (s) ppm. MS m/e: 266 (M⁺); 235(M⁺-OCH₃); 221(M⁺-OC₂H₅). Analysis: Calcd. for C₉H₉F₃N₂O₄: C, 40.61; H, 3.41; N, 10.52%. Found: C, 40.16; H, 3.59; N, 10.42%.

Compound **4a**: m.p., 54 °C. IR (KBr) cm⁻¹: 1235 (s); 1740 (s). ¹H NMR (CCl₄) δ : 1.14 (t, 3H, *J*=7 Hz); 3.30 (s, 3H); 4.17 (q, 2H, *J*=7 Hz); 12.71 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : -15.3 (s) ppm. MS *m/e*: 266(M⁺); 235 (M⁺ - OCH₃); 221 (M⁺ - OC₂H₅). Analysis: Calcd. for C₉H₉F₃N₂O₄: C, 40.61; H, 3.41; N, 10.52%. Found: C, 40.14; H, 3.71; N, 10.38%.

Compound **3b**: b.p., 186 °C/1 mmHg. IR(film) cm⁻¹: 1230 (s); 1730 (s). ¹H NMR (CCl₄) δ : 1.10 (t, 3H, J=7 Hz); 3.65 (s, 3H); 4.13 (q, 2H, J=7 Hz); 11.85 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : 3.90 (t, 3F, J=10 Hz); 24.7 (q, 2F, J=10 Hz); 47.3 (br., s, 2F) ppm. MS m/e: 366 (M⁺); 335 (M⁺ - OCH₃); 321 (M⁺ - OC₂H₅). Analysis: Calcd. for C₁₁H₉F₇N₂O₄: C, 36.08; H, 2.46; N, 7.65%. Found: C, 36.10; H, 2.56; N, 7.88%.

Compound **4b**: m.p., 68 °C. IR (KBr) cm⁻¹: 1240 (s); 1730 (s). ¹H NMR (CCl₄) δ : 1.19 (t, 3H, J=7 Hz); 3.71 (s, 3H); 4.21 (q, 2H, J=7 Hz); 12.13 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : 3.91 (t, 3F, J=10 Hz); 32.7 (q, 2F, J=10 Hz); 49.7 (br., s, 2F) ppm. MS m/e: 366 (M⁺); 335 (M⁺ – OCH₃); 321 (M⁺ – OC₂H₅). Analysis: Calcd. for C₁₁H₉F₇N₂O₄: C, 36.08; H, 2.46; N, 7.65%. Found: C, 36.33; H, 2.72; N, 7.66%.

Compound **3c**: m.p., 43 °C. IR (KBr) cm⁻¹: 1230 (s); 1730 (s). ¹H NMR (CCl₄) δ : 1.17 (t, 3H, *J*=7 Hz); 3.73 (s, 3H); 4.20 (q, 2H, *J*=7 Hz); 12.83 (br., s, 1H) ppm. ¹⁹F NMR (CCl₄) δ : -35.2 ppm. MS *m/e*: 282 (M⁺); 251 (M⁺ - OCH₃); 237 (M⁺ - OC₂H₅). Analysis: Calcd. for C₉H₉ClF₂N₂O₄: C, 38.24; H, 3.21; N, 9.91%. Found: C, 37.76; H, 3.06; N, 9.46%.

Compound **4c**: m.p., 58 °C. IR (KBr) cm⁻¹: 1200 (s); 1720 (s). ¹H NMR (CCl₄) δ : 1.17 (t, 3H, *J*=7 Hz); 3.73 (s, 3H); 4.20 (q, 2H, *J*=7 Hz); 12.15 (br., s, 1H) ppm. ¹⁹F NMR (CCl₄) δ : -29.7 ppm. MS *m/e*: 282 (M⁺); 251 (M⁺ - OCH₃): 237 (M⁺ - OC₂H₅); 247 (M⁺ - Cl). Analysis: Calcd. for C₉H₉ClF₂N₂O₄: C, 38.24; H, 3.21; N, 9.91%. Found: C, 37.82; H, 3.02; N, 9.55%.

Compound **3d**: b.p., 144 °C/ 1 mmHg. IR (film) cm⁻¹: 1230 (s); 1730 (s). ¹H NMR (CCl₄) δ : 1.22 (t, 3H, J=7 Hz); 3.78 (s, 3H); 4.30 (q, 2H, J=7 Hz); 12.90 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : -9.0 (t, 2F, J=16 Hz); 23.5 (t, 2F, J=16 Hz); 41.5 (br., s, 2F) ppm. MS m/e: 382 (M⁺); 351 (M⁺ - OCH₃); 337 (M⁺ - OC₂H₅). Analysis: Calcd. for C₁₁H₉ClF₆N₂O₄: C, 34.53; H, 2.37; N; 7.32%. Found: C, 34.49; H, 2.17; N, 7.71%.

Compound **4d**: m.p., 46 °C. IR (KBr) cm⁻¹: 1240 (s); 1740 (s). ¹H NMR (CCl₄) δ : 1.22 (t, 3H, J=7 Hz); 3.78 (s, 3H); 4.25 (q, 2H, J=7 Hz); 12.72 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : -8.8 (t, 2F, J=16 Hz); 31.67 (t, 2F, J=16 Hz); 44.5 (br., s, 2F) ppm. MS m/e: 382 (M⁺); 351 (M⁺-OCH₃); 337 (M⁺-OC₂H₅). Analysis: Calcd. for C₁₁H₉ClF₆N₂O₄: C, 34.53; H, 2.37; N, 7.32%. Found: C, 34.53; H, 2.09; N, 7.20%.

Compound **3e**: b.p., 128 °C/1 mmHg. IR (film) cm⁻¹: 1230 (s); 1740 (s). ¹H NMR (CCl₄) δ : 1.17 (t, 3H, J=7 Hz); 3.37 (s, 3H); 4.22 (q, 2H, J=7 Hz); 12.17 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : 2.5–8.2 (m, 8F); 39.7 (m, 1F); 53.2 (br., 2F) ppm. MS m/e: 482 (M⁺); 451 (M⁺ – OCH₃); 437 (M⁺ – OC₂H₅); 297 (M⁺ – OC₃F₇). Analysis: Calcd. for C₁₃H₉F₁₁N₂O₅: C, 32.38; H, 1.88; N, 5.81%. Found: C, 32.29; H, 1.99; N, 6.08%.

Compound 4e: b.p., 148 °C/1 mmHg. IR (film) cm⁻¹: 1230 (s); 1740 (s). ¹H NMR (CCl₄) δ : 1.18 (t, 3H, J=7 Hz); 3.37 (s, 3H); 4.25 (q, 2H, J=7 Hz); 12.20 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : 3.0–8.3 (m, 8F); 51.2 (m, 1F); 53.7 (br., 2F) ppm. MS m/e: 482 (M⁺); 451 (M⁺ – OCH₃); 437 (M⁺ – OC₂H₅); 297 (M⁺ – OC₃F₇). Analysis: Calcd. for C₁₃H₉F₁₁N₂O₅: C, 32.38; H, 1.88; N, 5.81%. Found: C, 32.33; H, 1.96; N, 6.01%.

Compound **3f**: m.p., 71 °C. IR (KBr) cm⁻¹: 1220 (s); 1710 (s); 2250 (w) (C=N str.). ¹H NMR (CCl₄) δ : 1.30 (t, 3H, J=7 Hz); 4.34 (q, 2H, J=7 Hz); 12.13 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : 2.7 (t, 3F, J=10 Hz); 27.3 (q, 2F, J=10 Hz); 47.8 (br., s, 2F) ppm. MS m/e: 333 (M⁺); 288 (M⁺ - OC₂H₅); 214 (M⁺ - C₂F₅). Analysis: Calcd. for C₁₀H₆F₇N₃O₂: C, 36.05; H, 1.82; N, 12.61%. Found: C, 35.93; H, 1.46; N, 12.45%.

Compound **4f**: m.p., 59 °C. IR (KBr) cm⁻¹: 1230 (s); 1730 (s); 2280 (w) (C=N str.). ¹H NMR (CCl₄) δ : 1.30 (t, 3H, J=7 Hz); 4.34 (q, 2H, J=7 Hz); 12.00 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : 2.7 (t, 3F, J=10 Hz); 33.7 (q, 2F, J=10 Hz); 49.0 (br., s, 2F) ppm. MS m/e: 333 (M⁺); 288 (M⁺ - OC₂H₅); 214 (M⁺ - C₂F₅). Analysis: Calcd. for C₁₀H₆F₇N₃O₂: C, 36.05; H, 1.82; N, 12.61%. Found: C, 36.00; H, 1.40; N, 12.48%.

Compound **3g**: m.p., 43 °C. IR (KBr) cm⁻¹: 1190 (s); 1730 (s); 2280 (w) (C \equiv N str.). ¹H NMR (CCl₄) δ : 1.33 (t, 3H, J = 7 Hz); 4.43 (q, 2H, J = 7 Hz); 12.43 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : -9.8 (t, 2F, J = 14 Hz); 26.5 (t, 2F, J = 14 Hz); 42.3 (br., s, 2F) ppm. MS m/e: 349 (M⁺); 304 (M⁺ - OC₂H₅); 214 (M⁺ - ClCF₂CF₂). Analysis: Calcd. for C₁₀H₆ClF₆N₃O₂: C, 34.35; H, 1.73; N, 12.02%. Found: C, 34.34; H, 1.43; N, 12.13%.

Compound **4g**: m.p., 54 °C. IR (Kbr) cm⁻¹: 1210 (s); 1710 (s); 2200 (w) (C = N str.). ¹H NMR (CCl₄) δ : 1.33 (t, 3H, J=7 Hz); 4.43 (q, 2H, J=7 Hz); 12.40 (br., 1H) ppm. ¹⁹F NMR (CCl₄) δ : -9.8 (t, 2F, J=12 Hz); 32.7 (t, 2F, J=12 Hz); 43.8 (br., s, 2F) ppm. MS m/e: 349 (M⁺); 304 (M⁺ - OC₂H₅); 214 (M⁺ - ClCF₂CF₂). Analysis: Calcd. for C₁₀H₆ClF₆N₃O₂: C, 34.35; H, 1.73; N, 12.02%. Found: C, 34.06; H, 1.41; N, 12.30%.

Acknowledgement

The authors wish to thank the National Natural Science Foundation of China and Academia Sinica for financial support.

References

1 R. Fucso, in R. H. Wiley (ed.), The Chemistry of Heterocyclic Compounds, Pyrazoles, Pyrazolins, Pyrazolides, Indazoles and Condensed Rings, Interscience, New York, 1967.

- 2 H. Kimoto and L. A. Cohen, J. Org. Chem., 45 (1980) 3831; R. Filler and Y. Kobayashi, Biomedical Aspects of Fluorine Chemistry, Elsevier Biomedical, Amsterdam, 1982.
- 3 Y.-C. Shen and J.-H. Zheng, Synthesis, (1985) 970.
- 4 J. E. Baldwin, C. Hoskins and L. Kruse, J. Chem. Soc., Chem. Commun., (1976) 795.
- 5 Y. Kobayashi, T. Yamashita, K. Takahashi, H. Kurada and I. Kumadaki, Chem. Pharm. Bull., 32 (1984) 4402.
- 6 Y.-Z. Huang, Y.-C. Shen, W.-Y. Ding and J.-H. Zheng, Tetrahedron Lett., 22 (1981) 5283.
- 7 Y.-Z. Huang, Y.-C. Shen, K.-T. Chen and C.-C. Wang, Acta Chimica Sinica, 37 (1979) 47.